| Types | Biofilm
component | Biofilm phase | State of Development& | Pros | Cons | |---|------------------------|-------------------------|---|---|---| | Agents | | | | | | | Antibiotics ^{1,2} | Microbial cell | All stages | Clinical | *Well understood. *Novel combinations promising. *Many can be combined with local delivery. | *Resistance. *Cytotoxicity. *Not necessarily effective against dormant populations. *Some have limited penetration into biofilm EPS | | Antimicrobial peptides ³ | Microbial cell | All stages | Pre-clinical | *Small molecules easily engineered for optimization. *Membrane physical disruption reduces probability of resistance. *Broad-spectrum *Species-specific targeting possible. | *Charge may limit transport
through biofilm EPS.
*Potential proteolytic
degradation.
*pH may affect activity
*Delivery to infected site | | Antimicrobial oligonucleotides ^{4,5} | Microbial cell | Early/Mature
biofilm | In vivo | *Small molecules easily engineered for optimization. | *Charge may limit transport
through biofilm EPS.
*Potential binding with
eDNA.
*Delivery to infected site
*Potential degradation by
nucleases | | Nanoparticles (inorganic, organic, hybrid) ⁶⁻⁸ | Microbial cell,
EPS | All stages | In vivo, pre-
clinical,
clinical† | *Readily functionalized. *Intrinsic bioactivity combined with drug- delivery capacity. *Small size allows transport into the EPS. *Triggered (pH, O ₂) mechanism possible for | *Charge may limit penetration into the biofilm EPS. *Properties affected by biological fluids. *Delivery to the infected site *Cytotoxicity. | on demand treatment. | Other antimicrobials/oxidizers/
antiseptics ¹ | Microbial cell | All stages | Clinical | *Physical mode of action
not requiring cellular
activity.
*Broad-spectrum. | *Lack of targeting specificity. * Restricted transport into biofilm EPS. *Cytotoxicity. *Reactive species neutralized by EPS. | |---|------------------------|--------------------------------------|--------------|---|---| | Persisters/dormant cells targeting ⁹ | Microbial cell | Early/Mature
biofilm | In vivo | *Specifically targeted to
non-growing
populations. | *Resistance (not well understood). *Delivery to infected site and transport into the biofilm. | | Antibody/Vaccines ¹ | Microbial cell,
EPS | Initial attachment,
early biofilm | In vivo | *Targeted to specific pathogens. | *Restricted transport into biofilm EPS. *Strain replacement. *Disruption of commensal populations. | | Adhesin inhibitors/binding ¹⁰ | EPS | Initial attachment | Pre-clinical | *Prevention preferable to treatment. | *Symptomatic infections
have established biofilms.
*Interaction with host
components.
*Delivery to at risk or
infected site. | | Bacteriophages ⁷ | Microbial cell | Early/Mature
biofilm | In vivo | *Highly specific and small size to enter biofilm EPS. | *Strain replacement. *Delivery to infected site and transport into the biofilm. | | Detergent/Surfactant irrigants ^{1,11} | Microbial cell,
EPS | All stages | Clinical | *Disruption not dependent of killing cells. | *Not all biofilm removed. *Release of pathogens may result in recolonization and | | | | | | *Active on dormant cells. *Readily combined for multimodal therapeutics. | acute infection. | |---------------------------------------|----------------|-----------------------------------|---|--|---| | Dispersal Inducers ^{12,13} | Microbial cell | Mature biofilm | In vitro, In vivo, pre-clinical, clinical | *Manipulating natural processes might be less likely to develop resistance. | *Release of pathogens may result in recolonization and acute infection. *Only portions of the biofilms are released. *Cytotoxicity. *Delivery to infected site and transport into the biofilm. | | Degradative Enzymes ^{14,15} | EPS | Early/Mature
biofilm | Clinical, pre-
clinical | *Disruption not dependent on killing cells. *Weaken biofilm physical structure; facilitate mechanical removal/mass transport. *Disrupt pathogenic microenvironment. *Cell activity not required. *Readily combined with irrigants and shear. | *Not all biofilm removed, possibly due to complex EPS chemistry and physical structure. *Release of pathogens may result in recolonization and acute infection. *Delivery to infected site *No, or limited, antimicrobial activity. *Cytotoxicity | | EPS synthesis inhibitors ¹ | EPS | Initial attachment, early biofilm | In vivo, In vitro | *Prevention of early
biofilm formation and
EPS protection.
*Readily combined with
antimicrobials | *Most infections have established biofilms by the time they are symptomatic. *EPS chemistry and structure highly complex. *Delivery to at risk or infected site. | | Natural products ¹⁶ | Microbial cell,
EPS | All stages | In vivo, clinical | *Selected for broad-
range of bioactivity
(from enzyme inhibitors
to antimicrobials).
*Chemical diversity with
drug-like properties
*Multi-mode of action | *Resistance. *Complex chemistry and isolation procedures. *Chemical composition variability. *Target identification *Cytotoxicity. | |---------------------------------------|------------------------|-------------------------|--------------------------|---|---| | Photodynamic substances ¹⁷ | Microbial cell | Early/Mature
biofilm | In vivo | *Controlled
bioactivation options.
*On demand activity. | *Light source access
required
*Delivery of materials to
infected site and transport
into biofilm.
*EPS may protect cells
deeper down. | | Metabolic interference ¹² | Microbial cell | Early/Mature
biofilm | In vivo,
In vitro | *Community manipulation against pathogens. *Disrupt pathogenic environment (pH). *Manipulating metabolism less likely to develop resistance. *Can trigger disassembly | *Requires specific metabolizing microbes. *Substrate delivery to and transport into biofilms. *Potential substrate utilization by host. *Release of pathogens may result in recolonization and acute infection. | | QS inhibitors ¹⁸ | Microbial cell | All stages | Pre-clinical,
In vivo | *Manipulating natural
pathways less likely to
develop resistance.
*Biofilm inhibition and
biofilm dispersal | *Dependent on growth cycle and nutrient source. *Signals can be washed away or sequestered in the EPS matrix of established biofilm *Complexity of signaling network. | | Probiotics ¹⁹ | Microbial cell | Initial attachment, early biofilm | In vitro,
Pre-clinical (in
oral), clinical† | *Community manipulation against pathogens *Concept proven in gut and vaginal biofilms. | * Establishment of probiotic
species in oral (and other
established) microbiota
challenging
*Long-term effects unknown | |---|------------------------|-----------------------------------|---|--|---| | Physical/Electric | | | | | | | Electric currents/fields ^{20,21} | Microbial cell,
EPS | Early/Mature
biofilm | Clinical, pre-
clinical | *Projected through induction or connected wires. *On demand antimicrobial generation. *Also promote wound healing. | *Electrochemistry of body
fluids not well understood.
*Heating of tissue.
*Delivery of fields and
currents to deep tissue.
*Cytotoxicity. | | Transducer/pressure waves ²² | Microbial cell,
EPS | Early/Mature
biofilm | In vivo, pre-
clinical | *Readily projected
through skin and soft
tissue.
*Local delivery.
*Physical action reduces
probability of resistance. | *Limited targeting. *Influence of pressure waves on viscoelastic biofilms not well understood. *Local delivery (i.e. shockwave) limited to small and accessible areas. *Heating cytotoxic effects. | | Interfacial tension ²³ (microbubbles/droplets) | Microbial cell,
EPS | Early/Mature
biofilm | Pre-clinical | *Physical action reduces
probability of resistance.
*Readily combined with
irrigants and shear. | *Accessibility. *Biofilm viscoelasticity can resist removal. *Residual cells may remain. | | Shear stress ²² | Microbial cell,
EPS | Early/Mature
biofilm | Clinical | *Physical action reduces
probability of resistance.
*Readily combined with
antimicrobials or
nanoparticles. | *Accessibility. *Biofilm viscoelasticity can resist removal. *Possible spread of biofilm if not used in combination with antimicrobial agents. | | Non-thermal (cold) plasma ²⁴ | Microbial cell | Early/Mature
biofilm | In vivo | *Antimicrobials
generated locally.
*High level of | *Accessibility of plasma. *Biofilm EPS may protect cells deeper down. | | Photothermal activation ²⁴ Delivery Systems | Microbial cell | Early/Mature
biofilm | In vitro | oxidation/reactive species renders resistance unlikely. *Antimicrobial activity can be controlled locally. *Can be readily combined with surface modifications. | *Response to plasma is species-dependent. *Highly localized. *Delivery to infected site and transport into biofilm. *Accessibility of light. *Biofilm EPS may protect cells. | |--|------------------------|-------------------------|---------------------------------------|---|--| | Bone cements ²⁵ | Microbial cell | Initial attachment. | Clinical | *High concentrations of | *Antimicrobial cytotoxicity. | | Done cements | Microbiai cen | mature biofilm | Cillical | antibiotics maintained at site of local infection for extended periods. *Prophylactic use. | *Development of resistance. | | Rinsing fluid/Irrigators ^{26,27} | Microbial cell,
EPS | Mature biofilm | Clinical | *Can be readily combined with antimicrobial agents. | *Accessibility. *Biofilm viscoelasticity can resist removal | | Surfaces ^{28,29} | Microbial cell | Initial attachment | Clinical | *Prevention more effective than treatment. *Access not required after implantation. *Can be targeted to those surfaces prone of biofilm infection. | *Bacteria have non-specific attachment mechanisms. *Surfaces masked by dead biofilm or host components. *Stability of surface coatings. *Finite antimicrobial reservoir/long-term effects | | Nanocarriers (nanoparticles/liposomes) ⁶ | Microbial cell,
EPS | Early/Mature
biofilm | In vivo,
pre-clinical,
clinical | *Readily functionalized. *Small size allows transport into the EPS *Carry/release different drug combinations *Triggered (pH, O ₂) mechanism possible for on demand drug-release. | *Charge may limit penetration into the biofilm EPS. *Delivery to the infected site *Properties affected by biological fluids. *Cytotoxicity *Prolonged retention needed for optimal drug release | &Specifically against biofilms †used clinically to treat other conditions δ Clinical - already a licensed product available to patients; Pre-clinical - currently in human trials In vivo - currently in animal model In vitro - encompassing basic (polystyrene plate) to advanced biofilm research (i.e. co-culture, explant tissue, patient samples) ## References - Lebeaux, D., Ghigo, J.-M. & Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. *Microbiology and Molecular Biology Reviews* **78**, 510-543 (2014). - Bayramov, D. F. & Neff, J. A. Beyond conventional antibiotics New directions for combination products to combat biofilm. *Adv Drug Deliv Rev*, doi:10.1016/j.addr.2016.07.010 (2016). - Pletzer, D., Coleman, S. R. & Hancock, R. E. Anti-biofilm peptides as a new weapon in antimicrobial warfare. *Curr Opin Microbiol* **33**, 35-40, doi:10.1016/j.mib.2016.05.016 (2016). - 4 Michaud, G. *et al.* Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. *Chemical Science* **7**, 166-182, doi:10.1039/C5SC03635F (2016). - Ning, Y. *et al.* Efficient suppression of biofilm formation by a nucleic acid aptamer. *Pathog Dis* **73**, ftv034, doi:10.1093/femspd/ftv034 (2015). - Zazo, H., Colino, C. I. & Lanao, J. M. Current applications of nanoparticles in infectious diseases. *J Control Release* **224**, 86-102, doi:10.1016/j.jconrel.2016.01.008 (2016). - Brooks, B. D. & Brooks, A. E. Therapeutic strategies to combat antibiotic resistance. *Advanced drug delivery reviews* **78**, 14-27 (2014). - 8 Allaker, R. P. & Memarzadeh, K. Nanoparticles and the control of oral infections. *Int J Antimicrob Agents* **43**:95–104 (2014). - 9 Wood, T. K. Combatting bacterial persister cells. *Biotechnol Bioeng* **113**, 476-483, doi:10.1002/bit.25721 (2016). - 10 Cozens, D. & Read, R. C. Anti-adhesion methods as novel therapeutics for bacterial infections. *Expert Rev Anti Infect Ther* **10**, 1457-1468, doi:10.1586/eri.12.145 (2012). - Otzen, D. E. Biosurfactants and surfactants interacting with membranes and proteins: Same but different? *Biochim Biophys Acta* **1859**, 639-649, doi:10.1016/j.bbamem.2016.09.024 (2017). - McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. *Nat Rev Microbiol* **10**, 39-50, doi:10.1038/nrmicro2695 (2011). - Barraud, N., Kelso, M. J., Rice, S. A. & Kjelleberg, S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. *Curr Pharm Des* **21**, 31-42 (2015). - 14 Kaplan, J. B. Biofilm matrix-degrading enzymes. *Methods Mol Biol* **1147**, 203-213, doi:10.1007/978-1-4939-0467-9_14 (2014). - Pleszczynska, M., Wiater, A., Janczarek, M. & Szczodrak, J. (1-->3)-alpha-D-Glucan hydrolases in dental biofilm prevention and control: A review. *International journal of biological macromolecules* **79**, 761-778, doi:10.1016/j.ijbiomac.2015.05.052 (2015). - Farha, M. A. & Brown, E. D. Strategies for target identification of antimicrobial natural products. *Nat Prod Rep* **33**, 668-680, doi:10.1039/c5np00127g (2016). - Yin, R. *et al.* Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. *Current opinion in pharmacology* **13**, 731-762, doi:10.1016/j.coph.2013.08.009 (2013). - Brackman, G. & Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. *Curr Pharm Des* **21**, 5-11 (2015). - 19 Vuotto, C., Longo, F. & Donelli, G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. *Int J Oral Sci* **6**, 189-194, doi:10.1038/ijos.2014.52 (2014). - Nodzo, S. R. *et al.* Cathodic Voltage-controlled Electrical Stimulation Plus Prolonged Vancomycin Reduce Bacterial Burden of a Titanium Implant-associated Infection in a Rodent Model. *Clin Orthop Relat Res* **474**, 1668-1675, doi:10.1007/s11999-016-4705-7 (2016). - Banerjee, J. *et al.* Silver-zinc redox-coupled electroceutical wound dressing disrupts bacterial biofilm. *PLoS One* **10**, e0119531, doi:10.1371/journal.pone.0119531 (2015). - Peterson, B. W. *et al.* Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. *FEMS Microbiol Rev* **39**, 234-245, doi:10.1093/femsre/fuu008 (2015). - Gomez-Suarez, C., Busscher, H. J. & van der Mei, H. C. Analysis of bacterial detachment from substratum surfaces by the passage of airliquid interfaces. *Applied and environmental microbiology* **67**, 2531-2537, doi:10.1128/AEM.67.6.2531-2537.2001 (2001). - Miquel, S., Lagrafeuille, R., Souweine, B. & Forestier, C. Anti-biofilm Activity as a Health Issue. *Front Microbiol* **7**, 592, doi:10.3389/fmicb.2016.00592 (2016). - Howlin, R. P. *et al.* Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. *Antimicrob Agents Chemother* **59**, 111-120, doi:10.1128/AAC.03676-14 (2015). - 26 Rmaile, A. *et al.* An experimental and computational study of the hydrodynamics of high-velocity water microdrops for interproximal tooth cleaning. *J Mech Behav Biomed Mater* **46**, 148-157, doi:10.1016/j.jmbbm.2015.02.010 (2015). - Urish, K. L., DeMuth, P. W., Craft, D. W., Haider, H. & Davis, C. M., 3rd. Pulse lavage is inadequate at removal of biofilm from the surface of total knee arthroplasty materials. *The Journal of arthroplasty* **29**, 1128-1132, doi:10.1016/j.arth.2013.12.012 (2014). - Besinis, A., De Peralta, T., Tredwin, C. J. & Handy, R. D. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. *ACS Nano* **9**, 2255-2289, doi:10.1021/nn505015e (2015). - Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. *Nat Rev Microbiol* **2**, 95-108, doi:10.1038/nrmicro821 (2004).